Rearranging series of vectors on a small set

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rearranging Series Constructively

Riemann’s theorems on the rearrangement of absolutely convergent and conditionally convergent series of real numbers are analysed within Bishop-style constructive mathematics. The constructive proof that every rearrangement of an absolutely convergent series has the same sum is relatively straightforward; but the proof that a conditionally convergent series can be rearranged to converge to what...

متن کامل

Diffusion on a Rearranging Lattice

In this paper we present a computer simulation of a random walk (RW) for diffusion on a rearranging lattice. The lattice consists of two types of sites – one good conducting (type 1) and the other poor conducting (type 2), distributed at random. The two types of sites are assigned different waiting times (τ1 for type 1 and τ2 for type 2) . We assume that at intervals of time τr, the site distri...

متن کامل

On the Complexity of Searching a Set of Vectors

The vector searching problem is, given fc-vector A (a fe-vector is a vector that has k components, over the integers) and given a set B of n distinct fe-vectors, to determine whether or not A is a member of set B. Comparisons between components yielding "greater than-equal-less than" results are permitted. If the vectors in B are unordered then nk comparisons are necessary and sufficient. In th...

متن کامل

Changes of signs in conditionally convergent series on a small set

We consider ideals I of subsets of the set of natural numbers N such that for every conditionally convergent series of real numbers ∑ n∈N an and s ∈ R, then there is a sequence of signs δ = (δn)n∈N such that ∑ n∈N δnan = s and N(δ) := {n ∈ N : δn = −1} ∈ I. We give some properties of such ideals and characterize them in terms of extendability to a summable ideal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2015

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2014.11.059